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ABSTRACT: In recent years, new measurement systems have been deployed to monitor and quantify methane emissions

from the natural gas sector. Large-eddy simulation (LES) has complemented measurement campaigns by serving as a

controlled environment in which to study plume dynamics and sampling strategies. However, with few comparisons with

controlled-release experiments, the accuracy of LES for modeling natural gas emissions is poorly characterized. In this

paper, we evaluate LES from theWeather Research and Forecasting (WRF)Model against Project Prairie Grass campaign

measurements and surface layer similarity theory.UsingWRF-LES, we simulate continuous emissions from 30 near-surface

trace gas sources in two stability regimes: strong convection and weak convection. We examine the impact of grid reso-

lutions ranging from 6.25 to 52m in the horizontal dimension on model results. We evaluate performance in a statistical

framework, calculating fractional bias and conducting Welch’s t tests. WRF-LES accurately simulates observed surface

concentrations at 100m and beyond under strong convection; simulated concentrations pass t tests in this region irrespective

of grid resolution. However, in weakly convective conditions with strong winds, WRF-LES substantially overpredicts

concentrations—the magnitude of fractional bias often exceeds 30%, and all but one t test fails. The good performance of

WRF-LES under strong convection correlates with agreement with local free convection theory and a minimal amount of

parameterized turbulent kinetic energy. The poor performance under weak convection corresponds to misalignment with

Monin–Obukhov similarity theory and a significant amount of parameterized turbulent kinetic energy.
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1. Introduction

Natural gas production within the United States has surged

in the past decade, increasing by more than 50% since 2010

(EIA 2020). Significant emissions from routine operations

(e.g., Thorpe et al. 2020), malfunctioning equipment (e.g.,

Conley et al. 2016), and abandoned wells (e.g., Kang et al.

2016) have spurred the development of new methane emission

monitoring instruments and platforms, including satellites,

piloted aircraft, unmanned aircraft, open-path lasers, and

ground-based point sensors (Fox et al. 2019). Source esti-

mation techniques (SETs) are used to interpret source

characteristics (e.g., emission rate) from the trace gas con-

centration measurements collected via these systems (Harper

et al. 2011). Operational source estimation techniques (OSETs)

are computationally low-cost and simple to use, and they vary

from instrument to instrument. Satellites and remote sensing

aircraft often use the integrated mass enhancement technique

(Frankenberg et al. 2016; Varon et al. 2018; Jongaramrungruang

et al. 2019). In situ aircraftmeasurements often usemass balance

techniques (Karion et al. 2013; Conley et al. 2017). Many

ground-based sensors employ techniques that rely on a transport

and dispersion model, such as the Gaussian Plume Model

(Pasquill 1972; U.S. EPA 2014; Coburn et al. 2018).

To build trust, OSETs are often tested and calibrated against

measurements in the field. Of all the common OSETs used to

quantify natural gas emissions, approaches based on the

Gaussian Plume Model have been the most extensively tested

against measurements. The Gaussian Plume Model has been

evaluated and calibrated against hundreds of controlled re-

leases through studies such as Project Prairie Grass (PPG)

(Barad 1958) and the EPA OTM 33A evaluation study (U.S.

EPA 2014). These studies have yielded better understanding

of the accuracy and limitations of the Gaussian Plume Model

for studying emissions from the natural gas sector. However,

OSET evaluation studies that are based on measurements

come with limitations, as they quantify performance in the

specific conditions that are encountered in the field (e.g., at-

mospheric stability, terrain). For example, the OTM 33A

evaluation study characterized performance in relatively flat

terrain, but the technique has since been applied in hilly terrain

(e.g., Caulton et al. 2019). Additionally, OSETs that rely on

measurements from aircraft and satellites have been evaluated

against fewer measurements. These techniques are newer, and

it can be more expensive and logistically complicated to make

measurements of controlled releases with these instruments.

As a result, aircraft- and satellite-basedOSETs have reliedmore

heavily on synthetic observations from models, namely large-

eddy simulation (LES). Overall, as new methods are developed

to quantify methane emissions from the natural gas sector, it is

critical to ensure that their corresponding OSETs are accurate.Corresponding author: Alex Rybchuk, alex.rybchuk@colorado.edu
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Interest has recently grown in using LES as a tool for

studying natural gas emissions. LES is a computational ap-

proach that numerically solves the volume-averaged Navier–

Stokes equations for flow at large scales and parameterizes

small-scale flow with subgrid-scale models. It has been exten-

sively applied in studies of the atmospheric boundary layer

(ABL) (Deardorff 1972; Moeng 1984; Mason 1994; Beare et al.

2006; Stoll et al. 2020). LES has been used as part of emission

quantification studies to improve measurement strategies

(Conley et al. 2017), evaluate and improve OSETs (Taylor

et al. 2016; Varon et al. 2018), test new OSETs and their as-

sumptions (Conley et al. 2017; Jongaramrungruang et al. 2019),

generate realistic synthetic measurements of methane (Saide

et al. 2018), and act as a transport model for field campaign

observations (Caulton et al. 2018). LES is computationally

expensive but offers several advantages over simpler transport

and dispersion models. LES models the dynamic behavior of

plumes as driven by time-varying winds, thereby circumventing

the need to assume time-averaged fields or steady-state be-

havior, two assumptions employed in many simpler models.

LES provides meteorological and concentration fields at all

time steps and locations within a domain, whereas observations

provide only a subset of these fields. LES can be used to study

plume dynamics under desired atmospheric forcing, and fur-

thermore, LES can simulate complicated physics encountered

at real-world natural gas facilities, such as complex terrain

(Lundquist et al. 2012; Xue et al. 2018) and time-varying

emissions (Saide et al. 2018); therefore, in principle, LES

could be used to accurately test OSETs or measurement

strategies under a wide variety of environmental conditions.

Unfortunately, LES of atmospheric trace gas dispersion has

been statistically evaluated against relatively few experimental

measurements (Steinfeld et al. 2008; Ardeshiri et al. 2020), and

thus its accuracy for emission quantification studies is not ex-

tensively characterized. The most well-known comparison

studies focus on the strongly convective ABL in flat terrain.

Convective tank studies first done by Willis and Deardorff

(1976) and improved upon by Weil et al. (2002) provided a

controlled environment to study tracer dispersion in strong

convection. In addition, the Convective Diffusion Observed by

Remote Sensors (CONDORS) study (Eberhard et al. 1988)

released tracers into a real convective ABL. Subsequent LES

studies have found good agreement with both sets of mea-

surements in the mixed layer (Lamb 1978; Nieuwstadt and de

Valk 1987; Weil et al. 2004, 2012; Nottrott et al. 2014).

LES evaluation studies that examine atmospheric dispersion

in the surface layer (less than approximately 100m above

ground level) have often found worse performance. For ex-

ample, Weil et al. (2012) compared surface concentrations in

the atmospheric surface layer from an LES-driven Lagrangian

particle dispersion model with observations from the PPG field

campaign. The study found good agreement between the two

beyond approximately 500m downwind of the source, but 50m

downwind LES underpredicted concentrations by as much as a

factor of 2. Other studies suggest that LES dispersion fails to

produce expected behavior when forced by conditions other

than strong convection. In one neutral boundary layer, LES

underpredicted horizontal trace gas dispersion (Nottrott et al.

2014). In a neutrally stratified field campaign study with mul-

tiple controlled releases, LES tended to overpredict emissions

(Caulton et al. 2018). Taken together, these two studies suggest

that LES of the neutral ABL tends to produce weaker near-

surface horizontal winds than would be expected, leading to

larger concentrations. As many methane monitoring technol-

ogies measure within the atmospheric surface layer and in a

range of atmospheric stabilities, it is key to understand the

performance of LES in these scenarios.

In this paper, we evaluate the performance of LES from the

Weather Research and Forecasting Model (WRF-LES) in the

atmospheric surface layer under two types of forcing: strong

convection and weak convection. We compare simulated

surface concentrations from WRF-LES with data from the

PPG field campaign, 50–800m downwind of a passive tracer

source. We assess the impact of LES grid resolution on

plumes. In addition, we compare with surface layer similarity

(SLS), a transport and dispersion model that is often em-

ployed in ground-based OSETs. Recognizing the impor-

tance of stochastic uncertainty caused by turbulence (Rao

2005), we evaluate performance in a statistical framework

(Chang and Hanna 2004) and simulate a 30-member en-

semble of plumes. In doing so, we aim to better understand

the accuracy of WRF-LES under simple but realistic methane

emission scenarios.

In section 2, we describe the WRF-LES dispersion simula-

tions, the PPG field campaign, surface layer similarity theory,

and the statistical metrics used in this study. In section 3, we

evaluate the performance of WRF-LES in a strongly con-

vective boundary layer, and we find good agreement with

both measurements as well as SLS theory. In section 4, we

find that WRF-LES performance suffers in a weakly con-

vective boundary layer. In section 5, we explore factors that

impact performance in the atmospheric surface layer, turning

to Monin–Obukhov similarity theory (MOST), local-free-

convection (LFC) theory, and parameterizations of turbulent

kinetic energy. In section 6, we offer conclusions that are

based on the study findings.

2. Methods

a. WRF-LES simulations

We evaluate the performance of the LES code from the

Advanced Research version of WRF (WRF-ARW, version

4.1.2) (Skamarock et al. 2019). WRF-ARW is a numerical

weather prediction code that uses the finite difference method

to solve the compressible, nonhydrostatic Euler equations on a

mass-based grid. It is a popular community-driven code with

more than 36 000 registered users, and it serves as the foun-

dation for several additional codes with applications ranging

from fire modeling (WRF-FIRE) to renewable energy mod-

eling (Powers et al. 2017).

To evaluate the performance of WRF-LES, we simulate

dispersion in the atmospheric boundary layer with eight

different configurations (Table 1). We model two types of

convection—a strongly convective boundary layer (SCBL) and a

weakly convective boundary layer (WCBL). We simulate each
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with a coarse-, a moderate-, and two fine-resolution grids. All

cases incorporate flat terrain, cyclic boundary conditions for

meteorological fields, a surface roughness of z0 5 0.008m, and

homogeneous surface heating. The specification of z0 is critical,

as in a set of precursor simulations, we found that setting z0
to 0.1 m produced modeled winds that were substantially

weaker than observed winds. Simulations are run without

moisture, radiation, microphysics, or other parameteriza-

tions commonly employed in mesoscale WRF runs. The

simulations in this study use third-order Runge–Kutta to

step forward in time, as well as fifth-order horizontal ad-

vection and third-order vertical advection. The nonlinear

backscatter and anisotropy (NBA) turbulence model cap-

tures subgrid effects (Kosović 1997; Mirocha et al. 2010),

and MOST provides the lower boundary condition via the

MM5 surface layer model (Jiménez et al. 2012).
Both the SCBL and WCBL spin up for two model hours,

after which WRF begins to save the fields of interest. The

SCBL is forced with constant 3.6m s21 geostrophic winds,

0.24WK21m21 surface heat flux, a 1 3 1024 s21 Coriolis pa-

rameter, and a 0.1-s time step. The SCBL horizontal grid res-

olutions are Dx 5 52, 26, and 10m for the coarse, moderate,

and fine simulations, respectively. These forcings and the

coarse grid resolution are consistent with Weil et al. (2012).
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FIG. 1. Grid of normalized 10-min-averaged plume concentrations

at 1.5m within the fine (top) SCBL and (bottom) WCBL.
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TheWCBL is forced with constant 10m s21 geostrophic winds,

0.1WK21m21 surface heat flux, a 1 3 1024 s21 Coriolis pa-

rameter, and a 0.05-s time step. The WCBL horizontal grid

resolutions are 31.25, 15.625, and 6.25m for the coarse,

moderate, and fine simulations, respectively. All coarse and

moderate simulations use constant vertical grid spacing, re-

spectively 21 and 10.5m in the SCBL and 10.5 and 5.25m in

the WCBL. The fine-resolution simulations use vertical

grid resolutions that change. In the fine SCBL and WCBL

simulations, the height of the first grid cell is z1 5 3m, and

concentrations are output at midcell height at 1.5 m. The

near-surface grid cells stretch at a rate of 3% until Dz5 10 or

6.25m is reached for the fine SCBL and WCBL, respectively.

Cells stretch again above the capping inversion at 3%, en-

abling higher resolution in the region area of interest at re-

duced computational expense.

To address the highly stochastic nature of dispersion in the

turbulent ABL, continuous emissions are simulated from 30

different surface sources in a grid with 500-m spacing, as in

Weil et al. (2012) (Fig. 1). Each source experiences different

local winds, so that each plume evolves somewhat indepen-

dently, circumventing the need for an ensemble of simulations

for a single set of conditions. Each plume is tagged so that

concentrations from one source are distinguishable from the

other sources. Plumes are emitted at themidpoint of the lowest

grid cells as in Nunalee et al. (2014) in the coarse (‘‘_C’’),

moderate (‘‘_M’’), and fine-surface (‘‘_FS’’) simulations.

Dispersion is modeled in an Eulerian framework, and, as a

result, the height of the emission source decreases as grid

resolution is increased. To study this effect, the fine-elevated

simulations (‘‘_FE’’) emit plumes at the same height as the

coarse simulations—approximately 10m in the SCBL and 5m

in the WCBL. To nullify the impact of recirculating plumes

resulting from periodic boundary conditions, we include a trace

gas absorbing plane 500m upwind of each source. Plume mass

was confirmed to be conserved in the region between plume

source and plume sink.

After a 2-h spinup, we sample trace gas fields and winds

every second during a 10-min period, matching the PPG

measurement period. To focus on average plume behavior and

minimize errors that stem from using point-concentration

measurements, we compare crosswind integrated concentra-

tions (CWIC) (Fig. 2), as is common in studies that employ

PPG measurements (e.g., van Ulden 1978; Weil et al. 2012).

CWIC is calculated at a given radius as

CWIC5Ds

�
�
i

C
i

�
, (1)

where Ci is the concentration at a cell i and Ds is the arclength
between cells. To account for the different release rates used

in PPG, CWIC calculations throughout this study are nor-

malized by emission rateQ, and this quantity is referred to as

‘‘concentration’’ although in strict terms it is a ‘‘normalized

crosswind integrated concentration.’’ To compare the me-

dium and coarse simulations to the PPG horizontal array

measurements collected at a height of 1.5 m, concentration

profiles are extrapolated downward using a fifth-order poly-

nomial fit to concentrations in the lowest 100m. For each

simulated emission source, we calculate 10-min-averaged CWIC

at 50, 100, 200, 400, and 800m downwind.

b. Project Prairie Grass

The PPG field campaign was conducted in 1956 in Kansas to

study the near-surface behavior of passive tracer plumes during

various meteorological conditions (Barad 1958). This cam-

paign serves as a cornerstone for atmospheric dispersion

models, informing key parameters in the Pasquill–Gifford

stability classes for the Gaussian Plume Model (Venkatram

1996) and acting as a validation dataset for many regulatory

dispersion models such as AERMOD (Cimorelli et al. 2005).

Seventy controlled releases of SO2 were carried out: six at

1.5m above ground level and the remainder at 0.48m. For each

controlled release, 10-min average concentration measure-

ments were collected at an array of 599 individual sampling

points. Measurements were conducted in concentric arcs 50,

FIG. 2. Measurement points in the fine SCBL (Dx5Dy5 10m) for

a radius of 100m.

TABLE 2. PPG observations used in this study.

SCBL WCBL

Run u* (m s21) L (m) Run u* (m s21) L (m)

15 0.22 26.6 5 0.37 229

16 0.23 23.3 9 0.43 234

25 0.19 25.4 19 0.37 225

47 0.22 25.3 26 0.41 228

48S 0.21 25.2 27 0.39 232

43 0.33 213

44 0.38 225

49 0.43 225

50 0.42 231

51 0.43 233

61 0.49 233

62 0.32 227
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100, 200, 400, and 800m downwind of the release source. Along

each arc, a horizontal array of point measurements was gath-

ered at a height of 1.5m, spaced 18 apart at 800m and 28 at all
other downwind distances. A vertical array of measurements

was also collected 100m downwind at heights 0.5, 1.0, 1.5, 2.5,

4.5, 7.5, 10.5, 13.5, and 17.5m using six towers. The overall

concentration uncertainties were reported as 1%–2%. The

roughness length of the site was estimated to be z0 5 0.008m

(Sawford 2001). The winds employed in this study were mea-

sured with a cup anemometer 25m west of the release source

at a height of 2m during a 10-min period. Obukhov lengths L

and friction velocities u* were not directly measured during

the campaign but were estimated from tower measurements in

subsequent analysis (Horst et al. 1979). Normalized CWIC for

the horizontal array is taken from Horst et al. (1979), and

normalized CWIC for the vertical array is calculated using

digitized data (http://www.harmo.org/jsirwin).

Measurements from a number of runs are either excluded in

this analysis or are not available. The runs used here are listed

in Table 2. Concentration measurements not reported for run

63 and run 64 because of ‘‘extremely light and variable winds.’’

Vertical tower measurements were gathered only for run 13

and beyond and were additionally not reported for runs 23, 28,

35, 53, 63, and 64. Furthermore, profile measurements were

excluded if wind direction was misaligned with the vertical

array and fewer than three towers captured measurements;

thus, fewer vertical profiles are available for comparison.

Winds speeds were not reported for run 3 and run 6, so those

runs are excluded from this analysis.

We aim to compare as many observations with WRF-LES

concentration simulations as possible. In principle, this com-

parison would best be achieved by running one simulation for

each controlled release, because each release occurs in the

presence of a different L and u*; however, running one high-

resolution simulation for each observation would be prohibi-

tively expensive. As an alternative, we assess the performance

of WRF-LES by binning PPG runs with similar atmospheric

conditions into strongly convective and weakly convective

categories. One common method to bin data in atmospheric

dispersion studies is the Pasquill–Gifford stability classes (De

Visscher 2013). These classes are traditionally delineated using

wind speeds and solar radiation, but they can be alternatively

delineated using a roughness length and Obukhov length

(Golder 1972). Class A corresponds to 0$ L$27 m for the

PPG roughness length. This range is used to bin PPG data

for comparison with the SCBL LES runs, which have L

between 26.3 and 25.7 m. The WCBL LES runs have L

between 220.4 and 219.5 m, which falls on the border be-

tween class B stability (27 $ L $ 215m) and class C sta-

bility (215$L$250 m). Accordingly, we use intermediate

values of the PPG runs, 210 $ L $ 235 m, for the LES

WCBL comparison bin. To more closely resemble the

WCBL LES, we additionally require u* $ 0.3 m s21.

c. Surface layer similarity theory

SLS theory (van Ulden 1978) is used to complement the

PPG observations. Each observation has a different pair of u*
and L values, and none of these pairs precisely match the

conditions in the LES; however, SLS theory can be used to

calculate approximate CWIC under any desired u* and L

conditions. Normalized CWIC at a height z is calculated for

the PPG runs as

CWIC(z)

Q
5

0:73

u z
exp

"
2

�
0:66z

z

�1:5
#
, (2)

where Q is the emission rate, z is the plume centerline height,

and u is the wind speed at the plume centerline. The values of z

and u are numerically computed on the basis of MOST, and

downwind distance x is implicitly a function of these variables.

SLS theory is strictly valid for releases at a height of 0m, but it

generally agrees well with the observations in this study

(Tables 3–5). In the SCBL, SLS-modeled concentrations typ-

ically have a fractional bias magnitude (section 2d) of less than

30%, although fractional bias can be as large as 115%. In the

WCBL, themajority ofmodeled concentrations also fall within a

fractional bias magnitude of 30%, although fractional bias may

be as large as 100%. Considering the overall good agreement

between SLS theory and observations, we use SLS theory as an

imperfect proxy for hypothetical observations, with u* and L

that match those of the LES. To calculate SLS concentration

fields that correspond to LES of the SCBL and the WCBL, we

use u* and L values from the fine resolution simulations.

TABLE 3. Average performance of SLS theory relative to PPG observations.

SCBL WCBL

FAC2 (%) FB (%) NMSE (%) FAC2 (%) FB (%) NMSE (%)

50m 100 3 2 95 7 1

100m 100 6 5 100 30 10

200m 100 3 10 100 18 6

400m 100 22 7 92 20 7

800m 60 18 3 83 23 14

TABLE 4. Fractional bias between SLS theory and individual PPG

observations in the SCBL.

Run 50m 100m 200m 400m 800m

15 20.08 20.19 20.35 20.28 20.38

16 20.14 20.14 20.05 0.22 0.67

25 20.04 0.14 0.27 20.05 0.20

47 0.10 0.10 0.04 20.13 0.19

71 0.32 0.42 0.43 0.48 1.15
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d. Statistical metrics

Chang and Hanna (2004) summarize metrics for evaluating

dispersion models by comparing an observation Co with a

model prediction Cp. Although there is no one optimal metric,

they conclude that ‘‘good performing models’’ have predic-

tions that fall within a factor of 2 of observations (FAC2) at

least 50% of the time, that the relative mean bias [here, frac-

tional bias (FB)] is less than 30%, and that the relative scatter

[here, normalized mean square error (NMSE)] is less than

approximately a factor of 2. FAC2 is calculated as the fraction

of data within 0.5#Cp/Co# 2.0. Fractional bias is calculated as

FB5
2(C

o
2C

p
)

C
o
1C

p

, (3)

where averages are taken over the set of measurements or

simulations. NMSE is calculated as

NMSE5
(C

o
2C

p
)
2

C
o
C

p

. (4)

Here, only observations for the horizontal array are used for

quantitative comparison, because the vertical array stability

bins have relatively few observations.

SLS model performance is compared with observations us-

ing FAC2, FB, and NMSE (Tables 3–5). In contrast, FAC2 and

NMSE are not calculated for LES because these metrics re-

quire each observation to be paired with a model prediction.

Nonetheless, Chang and Hanna (2004) emphasize the impor-

tance of assessing multiple metrics when comparing models to

observations. As such, we use theWelch’s t test to compare the

LES distribution and the observed distribution of concentra-

tion. Both distributions are assumed to be Gaussian at each

downwind location. The null hypothesis is that the mean con-

centrations for these distributions are identical, and the test

is conducted at the 95% confidence interval with a two-

sided tail. Mean LES concentrations are also evaluated using

FB. However, for the FB comparison, SLS theory serves

as comparison—instead of observations—to minimize error

stemming from differences in L and u*. Seeking to charac-

terize the accuracy of only surface emission sources, we omit

statistical comparisons for the LES runs that emit above the

lowest grid height.

3. Evaluation of LES in the strongly convective
boundary layer

a. Horizontal surface concentrations

As LES grid resolution is refined under strongly convective

conditions, mean surface concentrations approximately con-

verge in the far field but diverge closer to the source (Fig. 3).

Downwind of 200m, mean surface concentrations from the

surface-release simulations (SCBL_C, SCBL_M, SCBL_FS) as

well as the elevated-release simulation (SCBL_FE) nearly

collapse onto the same line. Closer to the source, 50-m surface

concentrations increase as the grid is refined. To investigate

the mechanism that causes this discrepancy, we examine the

impact of source height.

TABLE 5. Fractional bias between SLS theory and individual PPG

observations in the WCBL.

Run 50m 100m 200m 400m 800m

5 0.13 0.41 0.34 0.40 0.49

9 0.07 0.29 0.19 0.17 0.24

19 0.10 0.40 0.50 0.67 1.00

26 0.12 0.30 0.20 0.22 0.27

27 0.08 0.33 0.20 0.20 0.10

43 0.03 0.15 20.02 20.04 20.09

44 0.07 0.33 0.23 0.15 0.20

49 20.01 0.20 0.05 0.02 20.02

50 0.07 0.32 0.38 0.31 0.47

51 20.07 0.22 0.28 0.35 0.77

61 0.09 0.27 0.02 20.12 20.20

62 0.15 0.37 20.12 0.10 20.08

FIG. 3. SCBL observations and model predictions for the horizontal array. Ensemble av-

erageLES concentrations are shown as solid lines. SLS concentrations are calculated using u*
and L from SCBL_FS.
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As grid resolution is vertically refined, the height of the

‘‘surface’’ grid cell changes, thereby modifying the emission

height. This height change produces differences in surface

concentration that are significant close to the source but are

insignificant farther downwind. Downwind of 200m, mean

surface concentrations from SCBL_FS (which emits at 1.5m)

and SCBL_FE (which emits at 10 m) overlap. However,

between 10 and 200m downwind of the source, mean surface

concentrations diverge. Thus, it appears that the near-

source concentration increase across all simulations pri-

marily emerges from a change in source height. Therefore,

when studying near-field trace concentrations through Eulerian

dispersion simulations, it is critical to have a vertical grid fine

enough thatmatches the desired emission height. This constraint

can be avoided through the use of Lagrangian simulations

(e.g., Weil et al. 2012).

Under strongly convective conditions, LES agrees moder-

ately well with SLS theory, although agreement varies by

resolution (Table 6). The moderate resolution simulation

has the best agreement overall; while 50-m fractional bias is

83%, fractional bias is below 30% [the ‘‘good’’ performance

threshold from Chang and Hanna (2004)] for all other

downwind distances. Similarly, fractional bias in the coarse

simulation fails to meet the 30% threshold at 50 and 100 m

downwind, but it meets that threshold at all other downwind

distances. Interestingly, the fine resolution, surface-release

simulation fairs the worst when compared to SLS theory.

This simulation fails to meet the 30% threshold at any

downwind distance; fractional bias is approximately 50% at

most downwind locations. While this is larger than the 30%

threshold, these fractional bias values are approximately

consistent downwind of 50 m. This offset points to a bias

that likely arises from a mismatch in friction velocity and

Obukhov length. We underscore that (just like LES) SLS

theory is a model, and as such, it is an imperfect represen-

tation of real-world plume dynamics. To complement frac-

tional bias calculations conduced with SLS theory, we

additionally examine the results of t tests.

LES agrees well with observations in strongly convective

conditions. We conduct a Welch’s t test at each downwind lo-

cation is used to assess whether the average LES and average

measured concentrations differ significantly (Table 6). All

three simulations perform equally well, irrespective of reso-

lution. The distribution of simulated concentrations is statis-

tically indistinct from measured concentrations everywhere

aside from at 50m.

It is crucial that these comparisons are rooted in a statistical

framework, because LES ensemble members in the SCBL

display a significant amount of scatter. At 200m and beyond,

the minimum and maximum concentrations differ by more

than an order of magnitude. This scatter occurs even though all

plumes are subject to the same geostrophic winds and surface

heating. In the SCBL, individual plume behavior is strongly

governed by the local presence of updrafts and downdrafts. To

ensure that 30 members were sufficient to characterize surface

concentrations, we conduct a bootstrap analysis to estimate

confidence in mean concentrations as a function of ensemble

size (Wilks, 2019). Bootstrap samples are generated with re-

placement for n 5 1, 3, . . . , 30 members using plumes from

SCBL_FS. This process is repeated a large number of times for

each sample size (nB 5 1000) and the coefficient of variance

sB/m (standard deviation divided by mean) of each bootstrap

dataset is calculated. Uncertainty is reported as a function of

bootstrap sample size and downwind distance (Fig. 4), and it is

less than 10% for the 30-member ensemble at all downwind

distances. As such, we find that 30 members are sufficient to

TABLE 6. LES performance in the SCBL. ‘‘Reject’’ denotes that the null hypothesis has been rejected.

SCBL_C SCBL_M SCBL_FS

FB (%) t test FB (%) t test FB (%) t test

50m 100 Reject 84 Reject 71 Reject

100m 64 Not reject 24 Not reject 56 Not reject

200m 23 Not reject 17 Not reject 54 Not reject

400m 27 Not reject 19 Not reject 41 Not reject

800m 24 Not reject 27 Not reject 49 Not reject

FIG. 4. Bootstrap analysis in the SCBL.
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smooth the highly stochastic values of concentration from

individual plumes.

b. Vertical concentration profiles

As with the horizontal array, we find that WRF-LES per-

forms well against vertical profiles of concentration (Fig. 5).

The average concentrations across all resolutions match at

heights above 10m, the height of the lowest concentration

measurement from the coarse simulation. Nearly all measured

concentrations fall within the 30-member spread of SCBL_FS.

Additionally, the mean profile of SCBL_FS overlaps measured

concentrations from Run 16. In the SCBL, LES quantitatively

performs well against surface concentrations through frac-

tional bias comparisons and t tests, and it qualitatively per-

forms well at 100m. Thus, in conjunction with the analysis of

the horizontal array, we conclude that WRF-LES accurately

models realistic plume dynamics in the SCBL.

4. Evaluation of LES in the weakly convective
boundary layer

a. Horizontal surface concentrations

The simulated mean surface concentrations in the WCBL

show similar convergence behavior to those in the SCBL

(Fig. 6). Simulated concentrations from different resolutions

converge in the far-field, and they diverge closer to the source.

The emission heights in WCBL_M and WCBL_FS only

differ by approximately 1 m (respectively 2.6 and 1 m), and

as such, the near-field concentrations only slightly disagree

near the source.

Unlike the SCBL, the LES simulations of the WCBL per-

form poorly relative to SLS theory and observations in the

horizontal dimension (Table 7). Across all resolutions, most

comparisons show jFBj . 30%, which is outside the ‘‘good’’

performance threshold from Chang and Hanna (2004). While

the magnitude of fractional bias at 100 or 200m may be less

than 30%, this downwind distance is simply the crossover

point where LES transitions from overprediction to under-

prediction. In addition, every t-test comparison aside from

the 200-m moderate resolution case fails. This single success

case is dismissed as coincidental based on the results of the

other t tests. Based on the different concentration decay

rates, LES plumes in the WCBL are mixing more weakly

than observed plumes.

b. Vertical concentration profiles

Surprisingly, the WCBL appears to perform somewhat ac-

curately for the vertical array of measurements (Fig. 7).

However, the surface concentration comparison reveals that

FIG. 5. SCBL observations andmodel predictions for the vertical

array at 100-m downwind distance. Ensemble average LES con-

centrations are shown as solid lines, and individual plumes are

shown as thin lines. SLS concentrations are calculated using u* and

L from SCBL_FS.

FIG. 6. WCBL observations and model predictions for the horizontal array. Ensemble

average LES concentrations are shown as solid lines. SLS concentrations are calculated using

u* and L from WCBL_FS.
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this performance is coincidental, and it does not reflect that

LES accurately models trace dynamics in weakly convective

conditions. Unlike in the SCBL, concentration profiles from

different resolution simulations fail to overlap above 10m.

This suggests that fields in the WCBL are grid-resolution de-

pendent, and as such, they are unlikely to correspond to real-

world dynamics. Correspondingly, LES infrequently overlaps

with observations. The best agreement between LES and ob-

servations is found at 17.5m, where both WCBL_FS and ob-

servations suggest negligible amounts of tracer. Notably, as

resolution is increased, LES profiles tend toward observed and

SLS profiles. Ardeshiri et al. (2020) found that resolution in-

creases for LES of dispersion in neutral conditions produced

marginal improvements for refinements at coarser resolutions

but substantial improvements for refinements of finer grids.

Thus, it is possible that additional grid resolution in theWCBL

will lead to improved accuracy. But, while trends in WCBL

profiles suggest that increased grid resolution may help, trends

inWCBL surface concentrations do not suggest that this will be

the case. Ardeshiri et al. (2020) also found that neutral LES

underestimated crosswind variance s2
y and vertical variance

s2
w. This correlates with the undermixing observed in the

WCBL LES.

5. Discussion

We find that WRF-LES of trace gas dispersion from a sur-

face source performs well in strongly convective conditions but

underperforms in weakly convective conditions. In this section,

we discuss factors that may drive this behavior.

Near-surface turbulence within the atmospheric surface

layer is complicated tomodel; it is characterized by anisotropy, a

small outer length scale, a strong dependence on atmo-

spheric stability, and a ‘‘reverse turbulent cascade’’ where

small spatial scales transfer energy to larger scales (Sullivan

et al. 2003; Klipp 2014). These characteristics make it

challenging for LES to accurately model flow in this region,

and the inability of our LES to capture all of these features

likely drives the mismatched concentrations in the WCBL.

Modelers are actively researching methods to improve LES

accuracy near solid surfaces. Within the atmospheric surface

layer, these techniques include improving subgrid-scale

models (Porté-Agel et al. 2000; Bou-Zeid et al. 2005;

Chung and Matheou 2014; Mokhtarpoor and Heinz 2017),

improving wall models (Maronga et al. 2019), and refining

grid size and aspect ratio (Brasseur and Wei 2010; Daniels

et al. 2016).

One common approach to diagnose the performance of LES

in the atmospheric surface layer involves comparing simulated

fields to MOST. This theory is derived for flat terrain under

homogeneous forcing, as is the case in this LES study, and it has

been shown to agree well with observations in these conditions

(Businger et al. 1971; Dyer 1974). MOST is only accurate for

moderately unstable to moderately stable surface layers,22,
z/L , 1 (Foken 2006). In strict terms, MOST is valid for

ensemble-averaged fields, but in many LES codes, including

WRF-LES, it is applied to instantaneous fields at individual

cells (Maronga et al. 2019). MOST describes wind and temper-

ature profiles in the atmospheric surface layer based on L, a

nondimensional wind shear fm, and a nondimensional temper-

ature gradient fh (Stull 1988). This nondimensional function

takes one ofmany similar empirical forms (Maronga andReuder

2017), and it is calculated from either observations or LES as

f
m

�z
L

�
5

›u
h

›z

kz

u*
and (5)

f
h

�z
L

�
5

›u

›z

kz

u*
, (6)

where uh is the mean horizontal wind speed, u is the average

potential temperature, u* is the kinematic heat flux divided by

friction velocity, and k is the von Kármán constant, taken to be

0.4. The expression forfm can be used to calculate wind speed as

TABLE 7. LES performance in the WCBL.

WCBL_C WCBL_M WCBL_FS

FB (%) t test FB (%) t test FB (%) t test

50m 90 Reject 65 Reject 41 Reject

100m 65 Reject 62 Reject 32 Reject

200m 33 Reject 5 Not reject 213 Reject

400m 220 Reject 240 Reject 255 Reject

800m 260 Reject 278 Reject 280 Reject

FIG. 7. WCBL observations and model predictions for the

vertical array at 100-m downwind distance. Ensemble average

LES concentrations are shown as solid lines, and individual

plumes are shown as thin lines. SLS concentrations are calculated

using u* and L from WCBL_FS.
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We examine the behavior of the WCBL near the ground

with reference toMOST.We calculate fm and fh directly from

WCBL LES wind fields and compare with empirical profiles

based on the WCBL_FS values of u* and L using the recom-

mended parameterization from Foken (2006) (Figs. 8d,e). A

large peak (‘‘overshoot’’) is observed in the LES-based fm

profiles, correlating with excessive shear observed in other

studies (e.g., Maronga et al. 2019; Peña and Hahmann 2020)

and the height of this overshoot decreases as resolution in-

creases, as in Brasseur and Wei (2010). We additionally ob-

serve overshoot in fh profiles, as in Khanna and Brasseur

(1997) for LES driven with Smagorinsky-type SGS models.

The overshoot in fm causes LES winds to be stronger than

those predicted by MOST (Fig. 8f). Stronger winds typically

enhance tracer mixing. However, far-field LES concentrations

overpredict relative to SLS theory and observations, suggest-

ing weaker mixing. Thus, while fm and fh overshoot may

correlate with inadequate winds in the WCBL surface layer,

they do not appear to drive the LES far-field overprediction in

the WCBL. The overshoot could instead be expected to pro-

duce far-field underprediction.

In the asymptotically unstable state, u* tends toward 0 and

MOST is superseded by local-free-convection (LFC) theory.

Statistics ofw and u have been observed to agree well with LFC

theory (Wyngaard 2010). In LFC theory, two key scaling pa-

rameters for the dry atmosphere are (Maronga and Reuder

2017) as follows:

w
LF

5
�g
u
w0u0

0
z
�1/3

and (9)

u
LF

5
w0u00
w

LF

. (10)

The dimensionless mean gradient of temperature should

follow

›u

›z

z

u
LF

5A
u
, (11)

where Au is a universal constant that has been observed to

be 20.35 (Sorbjan 1986).

We examine the behavior of the SCBL with reference to

MOST and LFC theory. In strict terms, MOST should not be

applied to the SCBL, as heights above approximately 3m lie

outside the z/L range of applicability for this similarity theory.

As such, we provide these profiles simply as a reference. We

highlight that overshoot in fm does not occur in the SCBL,

even at the coarsest resolution. However, overshoot in fh

is still observed. We calculate Au using 10 instantaneous

temperature fields spaced 1min apart (Fig. 9). Mirroring the

FIG. 8. (a),(d) Nondimensional wind shear fm; (b),(e) nondimensional temperature gra-

dient fh; and (c),(f) wind speed profiles computed from LES (colored lines) and empirical fits

(black line), scaled by boundary layer depth d, for profiles corresponding to the (top) SCBL

and (bottom) WCBL.
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LFC LES study of Maronga and Reuder (2017), LES values

of Au approximately equal the observed value of 0.35, es-

pecially in the upper part of the surface layer. Maronga and

Reuder (2017) exclude the lowest seven vertical levels in

their high resolution simulation due to boundary condition

concerns (Larsson et al. 2016). We similarly observe poor

agreement for the lowest seven vertical levels of SCBL_FS.

We additionally highlight a grid dependence, as SCBL_C

agrees well with observations by the third vertical level.

Overall, LES of the SCBL agrees with observed values of

Au, correlating with the performance with regard to plume

modeling. Interestingly, good LES plume dispersion per-

formance is observed even though simulated values of Au

tend to disagree with observed values at the lowest vertical

levels. This surprising behavior may be explained by ex-

amining SGS energy.

Aside from employing MOST and LFC theory, studies in

the atmospheric surface layer characterize characterize near-

surface flow by quantifying the relative importance of SGS

modeling. In LES models, resolved winds near surfaces are

often underresolved, as the outer length scale of the flow can

be smaller than the LES filter width. SGS models parame-

terize the impact of underresolved winds everywhere in the

flow, but they often struggle to accurately parameterize near-

surface turbulence due to its unique attributes (Sullivan et al.

2003). Many grid resolution guidelines have been proposed to

ensure accurately modeled flow (e.g., Wurps et al. 2020).

Pope (2004) suggest that the resolved turbulent kinetic energy

(TKE) should compose at least 80% of the total TKE. We cal-

culate total TKE from instantaneous fields as

e
tot

5
1

2
u0
iu

0
i 1

1

2
m

ii
1 e

SGS,prog
. (12)

The first term corresponds to resolved TKE, whereas the last

two terms correspond to SGS TKE. Velocity fluctuations u0
i at a

height z are calculated with reference to winds that have been

averaged horizontally across the domain. The subgrid TKE from

the prognostic TKE equation is eSGS,prog and mii is the diagonal

NBA model stress (Kosović 1997; Mirocha et al. 2010).

LES performance of plume dispersion correlates with ad-

herence to the Pope guideline (Fig. 10). In the SCBL, resolved

TKE composes over 80% of total TKE at all heights. In con-

trast, resolved TKE composes less than 80% of total TKE at

the lowest grid cells for all three resolutions. Approximately

70% of TKE is resolved at the lowest vertical level. Thus, flow

at emission height is underresolved in the WCBL. This may

lead to the undermixing observed in plumes in theWCBL. This

also suggests that a finer grid in the WCBL may lead to better

agreement with observations.

6. Conclusions

In this study, we assess the accuracy of WRF-LES for sim-

ulating trace gas dispersion from a surface source in strongly

convective and weakly convective boundary layers. We com-

pare 30 plumes within each simulation with horizontal and

vertical measurements from the Project Prairie Grass cam-

paign (50–800m downwind of a source, with measurements at

heights of 0.5–17.5m). We also compare WRF-LES simula-

tions to surface layer similarity (SLS) theory.We evaluate the

performance of WRF-LES dispersion using a statistical

framework, relying on the fractional bias metric and Welch’s

t tests to compare distributions.

In strongly convective conditions, WRF-LES, the PPG mea-

surements, and the SLS theory tend to agree well. Regardless of

grid resolution, WRF-LES concentrations pass t tests relative to

observations at 100m and beyond. When compared with SLS

theory, coarse- and moderate-resolution simulations tend to

have a fractional bias magnitude of less than 30%. The largest

discrepancies occur closest to the source at 50m. The fine-

resolution simulation produces fractional biases that are ap-

proximately 50%at 100mand farther downwind. This persistent

offset points to bias that arises from sensitivity in SLS theory to

micrometeorological conditions as well as limitations that come

with model-to-model comparisons.

In weakly convective conditions, WRF-LES agrees poorly

with SLS theory and observations. Regardless of grid resolu-

tion, WRF-LES substantially overpredicts concentrations at

50m and underpredicts concentrations beyond 200m. WRF-

LES agrees moderately well at 100 and 200m, although this

region simply corresponds to the crossover between over-

prediction and underprediction. This overall poor agreement

suggests that plumes from a surface source are undermixed in

LES of these atmospheric conditions.

We shed light on factors that drive agreement and dis-

agreement in the atmospheric surface layer by turning to

FIG. 9. Profile of the universal LFC constant Au.
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Monin–Obukhov similarity theory (MOST), local-free-con-

vection (LFC) theory, and SGS modeling. We find that winds

in the weakly convective LES poorly agree with MOST be-

cause of the ‘‘overshoot’’ problem (Brasseur and Wei, 2010).

As a result, LES predicts stronger winds than would be antic-

ipated. However, stronger winds should lead to overmixing,

whereas undermixing is observed in these simulations. Thus,

while overshoot is present and may correlate with poor accu-

racy of dispersion modeling, it does not appear to drive the

poor agreement with observed concentrations. In contrast,

LES of the strongly convective boundary layer agrees with

LFC theory, further suggesting that LES is accurately model-

ing real-world dynamics. Last, we quantify the relative con-

tribution of explicitly resolved turbulent kinetic energy (TKE)

to parameterized TKE. We find that strongly convective sim-

ulationsmeet the criteria suggested by Pope (2004), as resolved

TKE constitutes over 80% of total TKE at all heights.

However, resolved TKE only constitutes 70% of the total TKE

in weakly convective simulations at the surface, likely impacting

the surface-height emission sources. There is evidence that ad-

ditional grid resolution will improve LES agreement with ob-

served concentrations (Ardeshiri et al. 2020). However, there is

also evidence to the contrary; grid refinement from coarse to fine

resolution did not substantially change surface concentrations in

the weakly convective boundary layer in this study.

The results of this study caution that WRF-LES (and at-

mospheric LES codes in general) should be evaluated in a

statistical framework with reference to available empirical

datasets when possible. By simulating 30 plumes under iden-

tical large-scale forcing, we consider the stochastic nature of

turbulent diffusion. At times we observe order-of-magnitude

differences in 10-min-averaged concentrations between dif-

ferent plumes. This study examined the simple case of flat

terrain and homogeneous forcing, but the conclusions are

broadly applicable to studies examining dispersion in more

challenging scenarios, such as complex terrain or urban

environments.

LES has many unique features that makes it a uniquely

useful tool for modeling emissions of trace gases. LES can be

(and has been used) to improve measurement strategies for

field campaigns. It can simulate dispersion in complex envi-

ronments, which is valuable as regulators seek to characterize

real-world emissions in industrial environments with complex

terrain and time-varying emissions. This study also showcases

the invaluable theoretical contributions that stem from work

on wall-modeled LES and turbulence modeling. Through fur-

ther theoretical improvements and comparisons with con-

trolled releases, trust in LES dispersion can be fostered, and it

can begin to take a more central role in the emission quanti-

fication challenge.

Acknowledgments. We effusively thank the anonymous re-

viewer whose feedback substantially improved the analysis and

writing presented in this paper. In addition, we thank Ian
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